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ABSTRACT: In this paper, we introduce a new formula for fractional 

derivative for shifted Chebyshev polynomial. Also, Fractional differentiation 

matrix is derived based on shifted Chebyshev polynomial. Some examples of 

linear Fractional Differential Equations are solved by the new formula. 

Numerical results are compared with the exact solution to find the error and 

to show the efficiently of the proposed method. 

1. Introduction 

Fractional differential equations have a great interest recently in last few years [5]. It is caused 

by the intensive development of the theory of fractional calculus. It is applied in various sciences 

such as physics, mechanics, chemistry, engineering, etc. Recently, there are some papers present 

the existence of solution of nonlinear initial fractional differential equation by the use of 

techniques of nonlinear analysis. Although the tools of fractional calculus have been available 

and applicable to various fields of study, the investigation of the theory of fractional differential 

equations has only been started quite recently in [1, 2, 3, 4].  

The differential equations involving Riemann–Liouville differential operators of fractional order 
0 < q < 1, appear to be important in modeling several physical phenomena and therefore seem to 
deserve an independent study of their theory parallel to the well-known theory of ordinary 
differential equations. 
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On the other hand, Chebyshev polynomials have been proven successfully in the numerical 

solution of various boundary value problems [9]. Chebyshev polynomials are important in 

approximation theory because the roots of the Chebyshev polynomials are used as nodes in 

polynomial interpolation. The resulting interpolation polynomial minimizes the problem of 

Runge’s phenomenon and provides an approximation that is close to the polynomial of best 

approximation to a continuous function under the maximum norm.  

In this paper we aim to formulate new method for the fractional differentiation matrix based on 

shifted Chebyshev polynomials using it’s recurrence relation and use it for solving fractional 

order ordinary differential equations (FODE’s). 

The rest of the paper is arranged as follows: In Section 2, we introduce some mathematical 

preliminaries of the fractional calculus and some properties of the shifted Chebyshev 

polynomials. In section 3, we show the meaning of differentiation matrix of any order and how 

to get it. In Section 4, we derived a new formula for fractional derivative of shifted Chebyshev 

polynomial and show the form of fractional differentiation matrix. In section 5, we solve some 

examples of (F.D.E) which compared with exact solution. 

2. Preliminaries 

In this section, firstly we define the shifted Chebyshev polynomial of first kind 𝑇𝑛∗(𝑥)as follow: 

𝑇𝑛∗(𝑥) = cos(2𝑛𝜃)     , 𝑥 = 𝑐𝑜𝑠2(𝜃)    , 0 < 𝑥 < 1               (1) 

with recurrence relation: 

𝑇𝑛∗(𝑥) = 2(2𝑥 − 1)𝑇𝑛−1∗ (𝑥) − 𝑇𝑛−2∗ (𝑥) ,   𝑛 = 2,3, …                     (2) 

where 𝑇0∗(𝑥) = 1 ,𝑇1∗(𝑥) = 2𝑥 − 1 

The shifted Chebyshev polynomial can be expanded as a series of power of 𝑥 by the relation: 

 
2
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with orthogonal relation defined by: 
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Now, we give the definition of Caputo fractional derivative as follows: 

Let 𝛼 ∈ 𝑅 𝑎𝑛𝑑 𝑛 ∈ 𝑁  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑛 − 1 < 𝛼 < 𝑛  the Caputo fractional derivative of order 𝛼is 

defined by the following relation:  

𝐷𝑎𝛼𝑓(𝑥) = 1
Γ(𝑛−𝛼)∫

𝑓(𝑛)(𝑢)
(𝑥−𝑢)𝛼−𝑛+1

𝑥
𝑎  𝑑𝑢  ,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 − 1 < 𝛼 < 𝑛                     (4) 

 

𝐷𝛼𝑥𝛽 = Γ(𝛽+1)
Γ(β+1−α)

𝑥(𝛽−𝛼)                        (5) 

Where           𝑓(𝑛) = 𝑑𝑛

𝑑𝑥𝑛
𝑓(𝑥) 

with the following properties: 

1. 𝐷𝑡𝛼�𝑓(𝑡) ∗ 𝑔(𝑡)� = ∑ �𝛼𝑘�
∞
𝑘=0 𝐷𝑡𝛼−𝑘[𝑓(𝑡)]𝐷𝑡𝑘[𝑔(𝑡)] 

2. 𝐷𝑡𝛼(𝑓(𝑡) ∗ 𝐶) = ∑ �𝛼𝑘�
∞
𝑘=0 𝐷𝑡𝛼−𝑘[𝑓(𝑡)]𝐷𝑡𝑘[𝐶] = 𝐶𝐷𝑡𝛼𝑓(𝑡) 

3. 𝐷𝑡𝛼�𝑓(𝑡) ± 𝑔(𝑡)� = 𝐷𝑡𝛼(𝑡0𝑓(𝑡)) ± 𝐷𝑡𝛼(𝑡0𝑔(𝑡)) 

 

3. Derivation of new formula for fractional differentiation matrix: 

The solution of fractional differential equation which approximated by the function𝑢𝑁(𝑥) can be 

representing by spectral method in the following form as in [7]: 

𝑢𝑁(𝑥) = ∑ 𝜃𝑗𝑎𝑗𝑇𝑗∗(𝑥)𝑁
𝑗=0  ,    𝑥 ∈ [𝑎, 𝑏],       (6)       

Where 𝜃𝑗 = 1
2

, 𝑗 = 0,𝑁 𝑒𝑥𝑐𝑒𝑝𝑡 𝑎𝑡 𝑗 = 1, … ,𝑁 − 1,𝜃𝑗 = 0 

This representation at the collocation points which given by: 

𝑥𝑗 =
1
2
�(𝑎 + 𝑏) − (𝑏 − 𝑎) cos �

𝜋𝑛
𝑁
��   ,   𝑛 = 0,1,2, …𝑁  

Using the orthogonality relation for𝑇𝑗∗(𝑥)  where 
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∑ 𝜃𝑗𝑇𝑖∗(𝑥𝑛)𝑇𝑗∗(𝑥𝑛) = 𝛼𝑖𝛿𝑖𝑗𝑁
𝑗=0  &  𝛼𝑖 = �

𝑁
2

   , 𝑖 ≠ 0,𝑁
𝑁   , 𝑖 = 0,𝑁

 

We can compute the coefficient 𝑎𝑗 by the relation: 

𝑎𝑗 = 2𝜃𝑗
𝑁 ∑

=

N

n 0

𝑇𝑖∗(𝑥𝑛)𝑢(𝑥𝑛)         (7) 

The first and second derivative for the function𝑢(𝑥𝑛)  at the above collocation points with using 

expansion in eq. (6) and Chebyshev coefficients which defined by the eq. (7), we can 

approximate  𝑢(1)(𝑥𝑖) as: 𝑢(1)(𝑥𝑖) = ∑ 𝜃𝑗𝑎𝑗𝑇𝑗
∗(1)(𝑥𝑗)𝑁

𝑗=0  

𝑢(1)(𝑥𝑖) = ∑ �2𝜃𝑛
𝑁
∑ 𝜃𝑗𝑇𝑗

∗(1)(𝑥𝑖)𝑇𝑗∗(𝑥𝑛)𝑁
𝑗=0 � 𝑢(𝑥𝑛)𝑁

𝑛=0    

The expression of differentiation matrix is given by the next equation 

𝑢(1)(𝑥𝑖) = ∑ [𝐴𝑥]𝑛𝑖𝑁
𝑛=0 ∗ 𝑢(𝑥)         (8) 

where 

[𝐴𝑥]𝑛𝑖 = 2𝜃𝑛
𝑁
∑ 𝜃𝑗𝑇𝑗

∗(1)(𝑥𝑖)𝑇𝑗∗(𝑥𝑛)  ,      𝑖,𝑛 = 0,1,2, …𝑁𝑁
𝑗=0      (9) 

The first derivative for shifted Chebyshev function as follow in [8]: 

𝑇𝑗
∗(1) = 2𝑗 ℷ ∑ 𝐶𝑛

𝑗−1
𝑛=0,𝑛+𝑗 𝑇𝑛∗(𝑥𝑖)        , ℷ = 2

𝑏−𝑎
  

The second differentiation matrix of second order of the function 𝑢(𝑥) is defined as the 

multiplication of first differentiation matrix by itself as: [𝐴𝑥]𝑛𝑖  × [𝐴𝑥]𝑛𝑖  

Then,  𝑢(2)(𝑥𝑖) = ∑ �[𝐴𝑥]𝑛𝑖 [𝐴𝑥]𝑗𝑛�𝑁
𝑛=0 ∗ 𝑢(𝑥) = ∑ �[𝐵𝑥]𝑗𝑖 � 𝑢(𝑥𝑗)𝑁

𝑛=0  

𝐵𝑥 = (𝐴𝑥)2 

and the elements of 𝐵𝑥 are: [𝐵𝑥]𝑖.𝑗 = ∑ [𝐴𝑥]𝑛𝑖 [𝐴𝑥]𝑗𝑛, 𝑖, 𝑗 = 0,1,2, … .𝑁𝑁
𝑛=0  
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We want to find the fractional differentiation matrix based on shifted Chebyshev polynomial of 

first kind 𝑇𝑛∗(𝑥). From the relation which defined by the eq. (9) 

[𝐴𝑥]𝑛𝑖 = 2𝐶𝑛
𝑁
∑ 𝑇𝑗

∗(1)(𝑥𝑖)𝑇𝑗∗(𝑥𝑛)  , 𝑖,𝑛 = 0,1,2, …𝑁𝑁
𝑗=0   

which defined the first differentiation matrix which defined by 𝑇𝑗
∗(1)(𝑥𝑖)  , then the 

differentiation matrix of order (m) is defined by 

[𝐴𝑥𝑥𝑥…𝑚]𝑛𝑖 =
2𝐶𝑛
𝑁

�𝑇𝑗
∗(𝑚)(𝑥𝑖)𝑇𝑗∗(𝑥𝑛)  , 𝑖,𝑛 = 0,1,2, …𝑁

𝑁

𝑗=0

 

Also the fractional derivative of order 𝛼 is defined by: 

[𝐴𝑥𝑥…𝛼𝑥]𝑛𝑖 = 2𝐶𝑛
𝑁
∑ 𝑇𝑗

∗(𝛼)(𝑥𝑖)𝑇𝑗∗(𝑥𝑛)  , 𝑖,𝑛 = 0,1,2, …𝑁𝑁
𝑗=0 .              (10) 

where𝑇𝑗
∗(𝛼)(𝑥𝑖) is fractional derivative of shifted Chebysheve polynomial of first kind. 

4. Computing Fractional derivative of  𝐓𝐣∗(𝐱𝐢) 

In this section, we deduce the fractional derivative for𝑇𝑗∗(𝑥) using recurrence relation (2) with its 

expanding as a power of 𝑥 by using eq. (3) and using definition of Caputo sense for fractional 

derivative as follows: From recurrence relation, we have 

𝑇𝑛∗(𝑥) = 2(2𝑥 − 1)(𝑛 − 1)�
(−1)𝑛−𝑘−1(𝑛 + 𝑘 − 2)! 22𝑘

(𝑛 − 𝑘 − 1)! 2𝑘!

𝑛−1

𝑘=0

𝑥𝑘 

−(𝑛 − 2)�
(−1)𝑛−𝑘−2(𝑛 + 𝑘 − 3)! 22𝑘

(𝑛 − 𝑘 − 2)! 2𝑘!

𝑛−2

𝑘=0

𝑥𝑘 

then 

𝑇𝑛∗(𝑥) = (𝑛 − 1)�
(−1)𝑛−𝑘−1(𝑛 + 𝑘 − 2)! 22𝑘+2

(𝑛 − 𝑘 − 1)! 2𝑘!

𝑛−1

𝑘=0

𝑥𝑘+1 
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−(𝑛 − 1)�
(−1)𝑛−𝑘−1(𝑛 + 𝑘 − 2)! 22𝑘+1

(𝑛 − 𝑘 − 1)! 2𝑘!

𝑛−1

𝑘=0

𝑥𝑘 

−(𝑛 − 2)�
(−1)𝑛−𝑘−2(𝑛 + 𝑘 − 3)! 22𝑘+1

(𝑛 − 𝑘 − 2)! 2𝑘!

𝑛−1

𝑘=0

𝑥𝑘 

After simplifying this equation we reach to 

𝑇𝑛∗(𝑥) = −4 ∗ (𝑛 − 1)�
(−1)𝑛−𝑘−2(𝑛 + 𝑘 − 2)(𝑛 + 𝑘 − 3)! 22𝑘

(𝑛 − 𝑘 − 1)(𝑛 − 𝑘 − 2)! 2𝑘!

𝑛−1

𝑘=0

𝑥𝑘+1 

+2 ∗ (𝑛 − 1)�
(−1)𝑛−𝑘−2(𝑛 + 𝑘 − 2)(𝑛 + 𝑘 − 3)! 22𝑘

(𝑛 − 𝑘 − 1)(𝑛 − 𝑘 − 2)! 2𝑘!

𝑛−1

𝑘=0

𝑥𝑘 

−(𝑛 − 2)�
(−1)𝑛−𝑘−2(𝑛 + 𝑘 − 3)! 22𝑘+1

(𝑛 − 𝑘 − 2)! 2𝑘!

𝑛−1

𝑘=0

𝑥𝑘 

Assuming Caputo definition and applying it for this equation where 

𝐷(𝛼)𝑥𝛽 =
Γ(β + 1)

Γ(β + 1 − α)
𝑥𝛽−𝛼 

the fractional derivative of order  𝛼 which defined for only terms for 𝑘 = ⌈𝛼⌉, ⌈𝛼⌉ + 1, … .𝑛 and 

terms from 𝑘 = 0,1, … . ⌈𝛼⌉ − 1 equal to zero then the summation convert to  ∑ … .𝑛
𝑘=⌈𝛼⌉  

Assume that  

𝐷(𝛼)𝑇𝑛∗(𝑥) = −4 ∗ (𝑛 − 1) �
(−1)𝑛−𝑘−2(𝑛 + 𝑘 − 2)(𝑛 + 𝑘 − 3)! 22𝑘

(𝑛 − 𝑘 − 1)(𝑛 − 𝑘 − 2)! 2𝑘!

𝑛−1

𝑘=⌈𝛼⌉

𝐷𝛼(𝑥𝑘+1) 

+2 ∗ (𝑛 − 1) �
(−1)𝑛−𝑘−2(𝑛 + 𝑘 − 2)(𝑛 + 𝑘 − 3)! 22𝑘

(𝑛 − 𝑘 − 1)(𝑛 − 𝑘 − 2)! 2𝑘!

𝑛−1

𝑘=⌈𝛼⌉

𝐷𝛼(𝑥𝑘) 
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−(𝑛 − 2) �
(−1)𝑛−𝑘−2(𝑛 + 𝑘 − 3)! 22𝑘+1

(𝑛 − 𝑘 − 2)! 2𝑘!

𝑛−1

𝑘=⌈𝛼⌉

𝐷𝛼(𝑥𝑘) 

𝐷(𝛼)𝑇𝑛∗(𝑥) = ∑ �(−1)𝑛−𝑘−2(𝑛+𝑘−3)!22𝑘

(𝑛−𝑘−2)!2𝑘!
� �2(𝑛+𝑘−2)

(𝑛−𝑘−1)
+ 1�𝑛−1

𝑘=⌈𝛼⌉ [𝐷𝛼𝑥𝑘+1 + 𝐷𝛼𝑥𝑘]  (11) 

Then the fractional differentiation matrix of order (𝛼) can be in the form 

[𝐴𝑥𝑥𝑥𝑥..𝛼]𝑛 = 2𝐶𝑛
𝑁
∑ 𝑇𝑗

∗(𝛼)(𝑥𝑖)𝑇𝑗∗(𝑥𝑛)  , 𝑖,𝑛 = 0,1,2, …𝑁𝑁
𝑗=0      (12) 

Finally we can define the expression of fractional differentiation matrix can be written by the 

equation: 

( ) ( )
0

( ) ( )
,

N

i
j

i j jf x d f xα α

=

=∑  

where 

𝑑𝑖,𝑗
(𝛼) = 2𝜃𝑗

𝑁
∑ 𝜃𝑛𝑁
𝑛=0 𝑇𝑛∗�𝑥𝑗�𝑇𝑛

∗(𝛼)(𝑥𝑖)                 (13) 

The matrix form is: 

    ( ) ( )α α=f D f  

The elements of the fractional differentiation matrix ( )αD  are: 

( ) ( ) ( )1 1
1,0 1,1 1,N2 2

( ) ( ) ( )1 1
N,0 N,1 N,N2 2

( )
,

0
A A A

A

0

A

2

A

0

i jd
N

α α α

α α α

α

 
 
 =
 
 
 





   



 

where 

𝐴𝑖,𝑗
(𝛼) = �𝜃𝑛

𝑁

𝑛=0

𝑇𝑛∗�𝑥𝑗�𝑇𝑛
∗(𝛼)(𝑥𝑖) 

 

5. Numerical Examples 
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We will introduce some of numerical examples of liner fractional differential equation and solve 

it by fractional differentiation matrix. 

UExample 1:U Solve the O.F.D.E  

𝐷(𝛼)𝑦(𝑥) + 𝑦(𝑥) =
2

Γ(3 − α)
𝑥2−𝛼 +

1
Γ(2 − α)

𝑥1−𝛼 + 𝑥2 − 𝑥 

with initial conditions 𝑦(0) = 0   and the exact solution is  

𝑦(𝑥) = 𝑥2 − 𝑥   , 𝑥𝜖[0,1]. 

Firstly the next figures shows the approximate solution and the error at different values of 𝛼. 

At 𝛼 = 0.3 , 0.5 , 0.7 , 0.9 and 𝑁 = 20 
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 𝛼 = 0.3,𝑁 = 20 

 
Figure 1 

 

 

 𝛼 = 0.5,𝑁 = 20 

Figure 2 

  

The next table shows the maximum errors at different values of 𝛼,𝑁 : 

Table of maximum errors at different𝛼and N 

𝛼 N=10 N=15 N=20 N=25 

0.1 1.8735e-16 1.1101e-16 1.3878e-16 1.3878e-16 

0.3 1.6653e-16 1.6653e-16 2.2204e-16 2.0817e-16 

0.5 9.7145e-17 1.1796e-16 8.3267e-17 1.4573e-16 

0.7 1.4572e-16 1.1102e-16 2.0123e-16 1.5959e-16 

0.9 1.6653e-16 1.6653e-16 8.9338e-17 1.9429e-16 
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UExample 2: 

Solve the following D.E: 

𝐷(𝛼)𝑦(𝑥) = 𝑥2 +
2

Γ(3 − α)
𝑥2−𝛼 + 𝑦(𝑥) 

and the exact solution is 

𝑦(𝑥) = 𝑥2 

with initial condition  

𝑦(0) = 0, 𝑥 ∈ [0,1] 

the following figures for different values of N at 𝛼 = 0.5 
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 N=10 

 
Figure 3 

N=15 

 
Figure 4 
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 N=20

 
Figure 5 

 N=25 

 
Figure 6 

 

The next table shows the maximum errors at different values of 𝛼,𝑁: 

𝛼 N=10 N=15 N=20 N=25 

0.3 4.4409e-016 6.6613e-016   7.7716e-016 6.6763e-016 

0.5 4.4409e-016 3.3307e-016 4.4409e-016 5.5511e-016 

0.7   9.6570e-016   6.6613e-016   5.5511e-016   3.9145e-016 

0.9   6.2699e-016   1.1858e-015   6.2815e-016   3.8131e-016 

 

UExample 3: 

Solving of (Bagley-Torvik equation) 
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𝑦(2)(𝑥) + 𝐷
3
2𝑦(𝑥) + 𝑦(𝑥) = 𝑔(𝑥)   , 𝑥 ∈ [0,5] 

 
and, 
 𝑔(𝑥) = 𝑥2 + 4�𝑥 𝜋⁄ + 2 
with boundary conditions: 
   𝑦(0) = 0   ,𝑦(5) = 25 
 
The following figures show the solution and absolute errors at different number of points: 
 

 𝑁 = 5 

 

 

 𝑁 = 10 
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Figure 7 Figure 8 

 
 
 
 
 
 

𝑁 = 15 𝑁 = 20 
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Figure 9 

 

 
Figure 10 

 

6. Conclusion: 

In this paper, the main goal is to solve Linear Fractional Differential Equations (L.F.D.E) 

depends on Fractional Differentiation Matrix (F.D.M). We derived a new method to calculate 

Fractional Differentiation Matrix from recurrence relation of shifted Chebyshev polynomial. We 

proposed numerical algorithm for solving (L.F.D.E) using GL points of shifted Chebyshev 

polynomial and approximated the solution using spectral method. We solve some examples and 

compared the approximation solution by the exact solution and compute the maximum error to 

know the convergence of our solution. 
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